
DOCUMENT RESUME

ED 466 177 IR 021 248

AUTHOR Jin, Qun; Ma, Jianhua; Huang, Runhe; Shih, Timothy K.
TITLE Design Principles of an Open Agent Architecture for

Web-Based Learning Community.
PUB DATE 2001-00-00
NOTE 7p.; In: ED-Media 2001 World Conference on Educational

Multimedia, Hypermedia & Telecommunications. Proceedings
(13th, Tampere, Finland, June 25-30, 2001); see IR 021 194.

AVAILABLE FROM Association for the Advancement of Computing in Education
(AACE), P.O. Box 2966, Charlottesville, VA 22902 ($40, AACE
members; $50, nonmembers). Tel: 804-973-3987; Fax:
804-978-7449; Web site: http://www.aace.org.

PUB TYPE Reports Research (143) Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Computer Simulation; Computer System Design; Distance

Education; Educational Development; Foreign Countries;
Higher Education; Instructional Materials; *Intelligent
Tutoring Systems; Man Machine Systems; World Wide Web

IDENTIFIERS Japan; *Learning Communities; *Virtual Communities

ABSTRACT
A Web-based learning community involves much more than

putting learning materials into a Web site. It can be seen as a complex
virtual organization involved with people, facilities, and cyber-environment.
Tremendous work and manpower for maintaining, upgrading, and managing
facilities and the cyber-environment are required. There is presented an
inevitable choice to use various agents to assist or replace people to a
certain extent for the work in a virtual learning community. There is a
strong need for the development of the designated architecture for
integrating and using various agents. This research focuses on developing an
open agent architecture that can easily integrate developed agents into a
learning system and flexibly modify the agents with permission. This paper
describes the design ideas of such desired architecture, demonstrates how the
architecture system works, and explains three agents--the scheduling agent,
the friend-making agent, and the Web-course management agent--in a Web-based
learning system called University2l. (Contains 10 references.) (MES)

Reproductions supplied by EDRS are the best that can be made
from the original document.

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

G.H. Marks

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

1

Design Principles of an Open Agent Architecture
for a Web-based Learning Community

Qun Jin
School of Computer Science, The University of Aizu

Aizu-wakamatsu, Fukushima 965-8580 Japan
jinqun@u-aizu.ac.jp

Jianhua Ma and Runhe Huang
Faculty of Computer and Information Science, Hosei University

3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan
{jianhua, rhuang} @k.hosei.ac.jp

Timothy K. Shih
Dept. of Computer Science and Information Engineering

Tamkang University, Tamsui, Taiwan 251, R.O.C.
tshih@cs.tku.edu.tw

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)This document has been reproduced asreceived from the person or organization

originating it.

Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in thisdocument do not necessarily represent
official OERI position or policy.

Abstract: A Web-based learning community is far beyond putting learning materials into a Web
site. It can be seen as a complex virtual organization with enormous work involved with people,
cyber-environment, and facilities. There is an inevitable choice to use various agents to assist or
replace human to a certain extent for the work in a virtual learning community. There is a strong
need for the development of the designated architecture for integrating and using various agents.
This research is focused on developing an open agent architecture that can easily integrate
developed agents to a learning system and flexibly modify the agents with permission. This
paper describes the design ideas of such desired architecture, demonstrates how the architecture
system works, and explains three agents in a Web-based learning system, University2l.

Introduction

With advances in the Internet and multimedia technologies, development of Web-based learning
communities for K12, high education, lifelong learning of citizen has become a hot topic. However, establishing a
Web-based learning community is far beyond putting learning materials into a Web site (Donath, 1997, Jones,
1997, Maynatt, 1997). A learning community is in fact a complex virtual organization (Ma, Huang, and Shin,
1999, Ma and Huang, 1999, Ma, Huang, and Kunii, 2000) involved with people, facilities, and cyber-environment.
Tremendous work and manpower for maintaining, upgrading, and managing facilities and cyber-environment are
required. Teaching/learning activities also require lots of assistance to release human from difficult and/or tedious
work so as to achieve teaching/learning efficiency. With rapid developments of software agent technologies, it
becomes a good choice to use various software agents (Johnson, 1998, Mengelle, etal, 1998) to assist or replace
human for work in a virtual learning community. To efficiently conduct teaching, learning and management
activities, many agents are required. In a virtual learning community, agents are mainly classified into three
categories, personal agents, facility agents, and cyber-environment agents. Personal agents assist people for
personal activities. Facility agents automatically provide monitoring, maintenance and upgrading of tools, systems,
and resources. Cyber-environment agents are resided in virtual office, virtual private room, virtual courseroom, etc.
for supporting teaching/learning related activities. Tab. 1 gives a list of only partial agents on demand in a virtual
learning community system. Facing so many agents needed, it is natural to encounter a problem, that is, how to
integrate agents to the virtual learning community system. It seems an architecture that allows easily and flexibly
integrate developed agents is preferred. This motivates us to design and develop a so-called open agent
architecture. Agents developed by different parties can be easily and flexibly integrated to a virtual learning
community system via the open agent architecture. This paper is focused on describing the design principles of
such desired architecture, demonstrates how the architecture system works, and describes some agents in
University2l (Ma, Huang, and Kunii, 2000). Finally, conclusions are drawn and future work is addressed.

2 BEST COPY AVAILABLE

Page 829

Personal Agents Facility Agents Cyber-environment Agents
Personal scheduling agent - System upgrading agent - User administration agent

- Friend-making agent - Tools upgrading agent Curriculum administration agent
- Mail/news filtering agent - Resource monitoring agent Web course maintenance agent
- Personality agent Resource management agent - People awareness agent
- Announcement agent - System maintenance agent - Teaching/learning assistance agent
- Meeting scheduling agent Tools maintenance agent * Authoring agent
- Group forming agent - Security agent * Tutoring/pedagogical agent

* Student learning monitoring agent
* Assessment agent

Table 1: A list of partial agents on demand in a virtual learning system

The Design Principles

The open agent architecture is designed under the following emphases. (1) It should make system
developers easy to integrate agents developed by other parties; (2) It should make agent developers flexible to
upgrade or modify agents; (3) It should make agents transparent to users for use. It is necessary to point out that to
be platform independent, the agent programs are written in Java language. The open agent architecture has the
following three characteristics and can work in two modes: the centralized or the distributed

Ease
It means that a virtual leaning system can easily integrate an agent. In a centralized system, the system only
needs to download the agent programs and unpack the agent programs, adds the agent name to the agent
list, adds the agent IP address to the agent routing table, allocates a certain resource for the agent, and starts
the agent server when the agent is requested by a user. In a distributed system, the system only needs a
privilege to start/stop the agent server (Schmidt, 1998) and redirect users to a site where the agent programs
reside and the agent server runs since agent programs are distributed in the local machine and resources are
managed locally too.

Flexibility
It means that an agent can be flexibly added, removed, and modified with permission. In a centralized
system, an agent can be flexibly registered or deregistered. Agent programs are uploaded or upgraded by
the agent developer with permission. In a distributed system, an agent is only registered or unregistered
with the agent name and address where the agent programs are resided. Uploading programs is not
necessary. The agent developer can modify or upgrade the agent programs in his/her local site. The open
architecture system is only given a privilege to start/stop the agent server in the remote site. When an agent
is to be deregistered or upgraded, the system stops the agent server, deletes the agent name from the agent
list, and removes the agent IP address from the agent routing table.

Transparency
It means that all registered agents are dynamically shown in the agent list with attached information like
agent name, agent ID, server status, and program type. Whether an agent is available or not, whether an
agent server is running or not, and whether an agent is being used or not, all those information is available
to users. The server starts to run when a user makes a request of using the agent if the server is not running.
The client program is automatically downloaded to the user site. If it is a Java applet, it automatically runs
on the Web browser in the user side. Otherwise, the user runs Java application program with a simple
command like make run.

The open agent architecture system is designed under the above emphases with features of ease, flexibility,
and transparency. Fig. 1 gives a system architecture that consists of four basic layers: client, agent, platform and
external layers.

In the client layer, TCP protocol is used for client-to-client communications via the agent server. The agent
server is running and then waiting for connections from its clients. After the connections are established,
communications among the clients are conducted through the TCP protocol.

In the agent layer, socket connection is used in a centralized system while 110P (Internet Inter-ORB
Protocol) (Schmidt, 1998) which runs atop the TCP transport protocol is used in a distributed system for
communications among agents via the messenger.
In the platform layer, the function modules of the open agent architecture are provided. This layer is further
divided into two parts: system components and external system connection components. The system
components consist of agent manager, agent data holder, and messenger. The external system connection
components provide various proxy servers corresponding protocols that are ready for connection to
external devices or systems. The request of using an external device or system is analyzed by the
connection adaptor and the inquiry agent is connected to the corresponding proxy server.
In the external layer, it places devices and/or systems that agents may require to connect, such as HTTP
Server, Mail Server, FTP server, the Internet, database, search engine, etc.

Data Base

System Components

Agent
Manager

Agent Data 11

Bolder Messenger,
' Directory
I Service
I Connection

External Layer

External System Connection Components

HTTP
Connection

Mail
Connection

FTP
Connection

i-mode

Connection Adaptor

A's ClientClient

4

Platform Layer

Client n

Figure 1: A basic composition of the open agent architecture

The Function Modules

Agent Layer

Client Layer

How an agent is functioning in the client layer is relied on the agent (agent server and client programs)
rather than the open architecture system. The most core functions of the open architecture system are provided in
the platform layer. In this section, we will discuss each function module below.

Agent Manager

Agent management is a function module of operating an agent life cycle on the open agent architecture
platform. It mainly provides functions like agent registration, upgrading, deregistration, running an agent server,
connection of agent clients to the agent server, and front-end functions to the agent data holder.

To register a developed agent to the open agent architecture platform, an agent developer accesses a web
page and clicks register button, and then an agent registration page is popped up. The developer inputs necessary
agent related information, such as agent name, agent IP address, agent program package name, agent working
mode, and server execution command. For working in the centralized mode, the agent program package (*.jar file)
is uploaded, unpacked and placed to the host where the agent manager is resided. At the same time, agent related
information is sent to the agent data holder by calling method addAgentO. For example, an agent name is added to
the agent list and agent IP address is added to the agent routing table in the agent data holder. A space allocation
request is also sent to the database via the agent data holder. The process of agent registration is shown in Fig. 2.

4
Page 831

WWW Server

File Upload

Web Browser

Agent
Program

Servlet Engine

Agent Register

addAgent()

Figure 2: The process of agent registration

Agent Data Holder

For working in the distributed mode, uploading of the agent programs is not necessary since all agent
programs are distributed and run on the agent developer's local JVM machine. Only information about the agent,
such as agent name, agent IP address, server execution command, etc., is registered. After an agent is registered, it
is ready for use. When a user would like to use an agent, the user goes to a specified web page and clicks an agent
icon (or an agent name from a list of agents), after that, the agent client program is automatically downloaded to
the user's local machine and run on the local JVM (Java virtual machine). The client program requests a
connection to the agent server and the agent server receives the request and accepts the connection. The
connection between the server and the client is thus established.

Similarly, to deregister or modify an agent from the open agent architecture platform, an agent developer
accesses a web page and clicks deregister or modify button. The developer has to input his/her user ID and
password. If the permission is granted, he/she can enter information related to the agent to be deregistered or
modified, the agent manager will perform the process of removing the agent, such as, disconnecting all clients,
removing agent programs, deleting the agent related information from the agent list and the routing table, and
releasing allocated space by calling deleteAgentO or mod5AgentO from the agent manager.

Agent Data Holder

The agent data holder mainly manages information and data of agents like agent name, agent description,
agent type, agent's access path, and etc. The following methods are public to the external modules.

Void addAgentO
Void deleteAgentO
Void modiNgentO
String getAgentName0
String getAgentPathO
Void getAgentlnfoO

Calling those methods is either from the agent register program in the agent manager or from the messenger when
an agent requests to communicate with another agent. There is an interface between the agent data holder and the
database. Data related to an agent is stored in the database. The agent list table and the agent routing table as
shown in Fig. 3 are updated during the agent life cycle operations and client connections.

Agent Routing Table

Agent Name IP Address

Client Table

Client_ID IP Address Port Number Agent Name

Figure 3: The agent routing table and the client table

5

Page 832

Messenger

Messenger is a mediator among agents. It enables the communications between two agents. When
receiving a request of connecting to another agent from an agent, the messenger analyzes the request with attached
information and retrieves the requested agent information from the agent routing table via the agent data holder by
calling getAgentO method as shown in Fig. 4. When receiving the retrieving result from the agent data holder, the
messenger connects the inquiry agent to the requested agent by calling connectroAgentO method if the request
agent exists, otherwise it returns a "not found" message to the inquiring agent if the requested agent does not exist.

Agent Data Holder

getAgent()

Connection Adaptor

V

Messenger

Agent
Program A

Figure 4: The role of the messenger

connectToAgent()

Agent
Program B

In fact, the connection adaptor behaves like a protocol handler that dispatches the request from an agent
and decides which type of communication protocol to be used between the inquiry agent and the requested
external device or system. After that, the connection adaptor connects the agent to the requested device or system
via a proxy server corresponding to the communication protocol to be used.

Agents in University2l

University2l (Ma, Huang, and Kunii, 2000) is a virtual university system that is aimed at supporting all
teaching, learning and administrating activities via the Internet. It requires many agents to assist teachers, students,
and administration staff for the teaching, learning and administration work involved in University21. After
developing many agents written in Java by different people or parties, we face a problem of integrating developed
agents into University21 system. The open agent architecture as the agent system platform in University21 solves
our problem. Currently, three most often used agents, scheduling agent (Ito and Shintani, 1997), friend-making
agent, and web-course maintenance agent, are integrated into University21, respectively. The scheduling agent is
used for personal scheduling, meeting scheduling, team work scheduling, and tele-lecturing scheduling. A user
can request to use the agent from his/her private office, a virtual courseroom, or a virtual collaboration room.
Friend making agent plays an important role in a virtual university system since users feel lonely when they are
teaching/studying in such virtual environment and the friend making agent can help them find friends to chat,
discuss, and even collaborate with. To achieve effective and efficient teaching/learning, friends are indispensable.
A user can use the friend making agent from his/her private office. Web-course maintenance agent helps teachers
to periodically check and update their teaching materials. With more and more Web-based teaching materials,
checking and updating them become difficult and tedious. However, it is an important work. The web-course
maintenance agent relieves teachers from such difficult and tedious work. A teacher can use the agent from a
virtual couseroom. Both scheduling agent and friend making agent are multi-agent systems and web-course
maintenance agent is a single agent system. For the multi-agent systems, communications among agents are
conducted via the messenger on the platform layer of the open agent architecture. It is necessary to point out that
University21 is currently a centralized system. Integrating three agents to University21 follows a centralized
fashion. The programs of three agents are uploaded, unpacked, and resided in University21's server machine as
we discussed above. The agent server programs are run in University2l host and the client program is
automatically downloaded to and runs on the user's local Java virtual machine when a user requests to use the
associated agent by clicking a hyperlink in a web page. The integrated agents are transparent to all users in
University21. Users are not aware where agent programs are. What they do just interact with GUI of each agent.
They can input their preference, make requests, be consulted with, and get reporting results as well as
communicate with an agent through the GUI of the agent.

6

Page 833

Conclusions and Future Work

To be platform independent, the open agent architecture is implemented in Java language. For those agents
developed in Java language are expected to be easily and flexibly integrated into a virtual learning community
system via the open agent architecture platform. As a virtual learning system, University21 has the open agent
architecture embedded. Three agents are integrated into University2l via the open agent architecture platform. It
proves the our design efforts of the open agent architecture: making the system easy to integrate developed agents,
making agent developers flexible to modify their agents, and making agent related information transparent to users.
The agent architecture is just like a door of a virtual learning community system that is open to developed agents
and allows them to easily and flexibly join and work for human in the teaching/learning community.

It is necessary to emphasize that the open agent architecture is applicable not only in Web-based learning
community system but also any Web-based virtual systems such as virtual trading/shopping center system, home
agent system, a virtual company, and a virtual city where various agents are used. However, this research is just at
its infant stage, there is lot of remain work to be done. We will mainly focus on implementing a distributed open
agent architecture, handling agent synchronization problem, and making agent manager intelligent.

Acknowledgments

The author thanks Mr. Masao Nonaka and Ms. Sanae Wada for their partial implementation work.

References

Donath, J.S. (1997). Inhabiting the Virtual City: the Design of Social Environment for Electronic Communities.
PhD Thesis, MIT media Arts and Sciences. http://judith.www.media.mit.edu/Thesis/

Ito, T. & Shintani T. (1997). Persuasion among Agents: An Approach to Implementing a Group Decision Support
System Basedon Multi-Agent Negotiation (pp592-597). In the Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97). Nagoya, Japan.

Johnson, L. (1998). Pedagogical Agents (pp13-22). In the Proceedings of ICCE'98, Vol. 1 .

Jones, Q. (1997). Virtual-Communities, Virtual Settlements and Cyber-Archaeology: A Theoretic Outline, JCMC
(3). http://icmc.huji.ac.il/vol3/issue3/iones.html

Ma, J., Huang, R., & Shih, T. K. (1999). The Concept, Framework and Architecture of an Integrated
Educational System for Virtual Universities (pp619-626). In the Edited Book: Advanced Research in Computers
and Communications in Educations, Vol.2, IOS Press, ISBN 1-58603-027-2.

Ma, J., & Huang, R. (1999). Towards an Integrated Educational System for Global Teaching and Learning
(pp256-263). In the Proceedings of the International Conference on Distributed Multimedia System (DMS'99),
Aizuwakamatsu, Japan.

Ma, J., Huang, R. & Kunii, T. L. (2000). University2l: An Integrated Educational System (pp109-139). Chapter 7
in the Book: International Perspective on Tele-education and Tele-learning, Edited by G. Orange and D. Hobbs,
Ashgate publishing Limited, ISBN 0-7546-1202-3.

Maynatt, E. D., Alder, A. Ito, M., & O'Day, V.L. (1997). Design For Network Communities. CHI97 Electronic
Publications. http://www.acm.org/sigchi/chi97/proceesings/paper/edm.htm

Mengelle, T., etal., (1998). Teaching and Learning with Intelligent Agents: Actors, Intelligent Tutoring Systems.
Lecture Notes in Computer Science 1452.

Schmidt, D. C. (1998). Evaluating Architectures for Multithreaded Object Request Brokers (pp54-60). Journal of
Communications of the ACM, No. 10, Vol. 41.

7

Page 834

U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)

Educational Resources Information Center (ERIC)

NOTICE

Reproduction Basis

ERIC
Eduadlonal hum Iranralm Center

This document is covered by a signed "Reproduction Release
(Blanket)" form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form
(either "Specific Document" or "Blanket").

EFF-089 (5/2002)

